MATH 579 Exam 4 Solutions

1. For all $n \in \mathbb{N}$, prove that $\sum_{k}\binom{n}{k}\binom{2 n}{n-k}=\binom{3 n}{n}$.

First solution: Apply Thm. 4.7 in the text, with $m=2 n, k=n, i=k$.
Second solution: In a class with n women and $2 n$ men, we choose n students. There are $\binom{3 n}{n}$ ways to do this, or we could instead choose k women and $n-k$ men, for every possible $k \in[0, n]$. The sum counts exactly this, because for k outside this range the summand is zero.
This is a direct application of Thm 4.7. It is also very similar to Problem 33, and to Problem 3 from the exam two years ago.
2. A northeastern lattice path is a path consisting of $(1,0)$ and $(0,1)$ steps. How many such paths are there from $(0,0)$ to $(10,10)$ that do not pass through $(1,1)$?

We count northeast lattice paths in a rectangle of size $n \times k$. There must be k steps north, and n steps east. Hence the northeast lattice paths are bijective with rearrangements of the word $\underbrace{N N \cdots N}_{k} \underbrace{E E \cdots E}_{n}$, which is counted by the multinomial coefficient $\binom{n+k}{n, k}=\binom{n+k}{k}$.
First solution: There are $\binom{10+10}{10}$ NE lattice paths altogether. We count how many pass through $(1,1)$ and subtract. This is a product of the number of paths from $(0,0)$ to $(1,1)$ and the number of paths from $(1,1)$ to $(10,10)$. Hence the answer is $\binom{20}{10}-\binom{2}{1}\binom{18}{9}=184756-97240=87516$.
Second solution: Desired paths must start $E E$ or $N N$. The former then has a northeast path from $(2,0)$ to $(10,10)$, of which there are $\binom{8+10}{10}=43758$. The latter has a northeast path from $(0,2)$ to $(10,10)$, of which there are $\binom{10+8}{8}=43758$. Altogether there are $43758+43758=87516$.
This is very similar to Problems 19, 23, 24, 31, 32, 50.
3. Which monomial term (s) of $(x+y+z)^{16}$ has the largest coefficient? What is that coefficient?

If $x^{a} y^{b} z^{c}$ is in the expansion, it must have $a+b+c=16$. Its coefficient is $\frac{16!}{a!b!c!}$. To maximize the coefficient we must minimize the denominator. Note that if $a>b+1$, then $(a-1)+(b+1)+c=a+b+c=6$, and $\frac{(a-1)!(b+1)!c!}{a!b!c!}=\frac{b+1}{a}<1$, so $(a-1)!(b+1)!c!<a!b!c!$ and hence $a!b!c!$ could not have been minimal. Hence, by symmetry, a, b, c must all be either equal or differ by 1 . Hence two of them are 5 and one is 6 . There are therefore three terms, each with coefficient $\binom{16}{5,5,6}: 2018016 x^{5} y^{5} z^{6}, 2018016 x^{5} y^{6} z^{5}, 2018016 x^{6} y^{5} z^{5}$.
This is very similar to Problems 10,11,12,44,45.
4. For all $n \in \mathbb{N}$, calculate $\sum_{k \text { odd }}\binom{n}{k} 3^{k}$.

By Newton's binomial theorem, we have $(1+3)^{n}=\sum_{k}\binom{n}{k} 3^{k}$. Also, $(1-3)^{n}=$
$\sum_{k}\binom{n}{k}(-3)^{k}=\sum_{k}\binom{n}{k} 3^{k}(-1)^{k}$. Hence $4^{n}-(-2)^{n}=\sum_{k}\binom{n}{k} 3^{k}\left(1-(-1)^{k}\right)=$ $\sum_{k \text { odd }}\binom{n}{k} 3^{k} 2$. Hence $\sum_{k \text { odd }}\binom{n}{k} 3^{k}=\frac{4^{n}-(-2)^{n}}{2}=2^{n-1}\left(2^{n}-(-1)^{n}\right)$.
This is a direct application of theorems proved in class. It is also very similar to Problems 39,40.
5. For all $k \in \mathbb{Z}$, prove that $\binom{n-1}{k-1}\binom{n}{k+1}\binom{n+1}{k}=\binom{n-1}{k}\binom{n+1}{k+1}\binom{n}{k-1}$.

First, if $k \leq 0$, then both sides are zero since $\binom{n-1}{k-1}=\binom{n}{k-1}=0$. Otherwise, $k \geq 1$, and we have $L H S=\frac{(n-1)_{k-1}}{(k-1)!} \frac{(n)_{k+1}}{(k+1)!} \frac{(n+1)_{k}}{k!}$ and $R H S=\frac{(n-1)_{k}}{k!} \frac{(n+1)_{k+1}}{(k+1)!} \frac{(n)_{k-1}}{(k-1)!}$. Note that both denominators are $(k-1)!k!(k+1)$! so it suffices to prove that $A=B$, for $A=(n-1)_{k-1}(n)_{k+1}(n+1)_{k}, B=(n-1)_{k}(n+1)_{k+1}(n)_{k-1}$. These have $\operatorname{gcd} C=(n-1)_{k-1}(n)_{k-1}(n+1)_{k}$. We have $A=C(n-(k+1)+2)(n-$ $(k+1)+1)=C(n-k+1)(n-k), B=C(n-1-k+1)(n+1-(k+1)+1)=$ $C(n-k)(n-k+1)$. Hence $A=B$, which proves the theorem.
This is solved directly from the definition of binomial coefficients; there are many problems that explore this idea.
6 . For $m, n \in \mathbb{N}$, prove that $\frac{1}{m!}=\lim _{n \rightarrow \infty}\binom{m+n}{n} n^{-m}$.
We have $\lim _{n \rightarrow \infty}\binom{m+n}{n} n^{-m}=\lim _{n \rightarrow \infty} \frac{(m+n)!}{m!n!} n^{-m}=\frac{1}{m!} \lim _{n \rightarrow \infty} \frac{(m+n)!}{n^{m} n!}=\frac{1}{m!} \lim _{n \rightarrow \infty} \frac{(m+n)_{m}}{n^{m}}=$ $\frac{1}{m!} \lim _{n \rightarrow \infty} \frac{(m+n)(m+n-1) \cdots(n+1)}{n^{m}}=\frac{1}{m!} \lim _{n \rightarrow \infty} \frac{(m+n)}{n} \frac{(m+n-1)}{n} \ldots \frac{n+1}{n}=\frac{1}{m!} \lim _{n \rightarrow \infty}\left(1+\frac{m}{n}\right)(1+$ $\left.\frac{m-1}{n}\right) \cdots\left(1+\frac{1}{n}\right)$. This looks bad until you realize that there are m terms in the product, and m is fixed as $n \rightarrow \infty$. Hence this equals $\frac{1}{m!} \lim _{n \rightarrow \infty}\left(1+\frac{m}{n}\right) \lim _{n \rightarrow \infty}(1+$ $\left.\frac{m-1}{n}\right) \cdots \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=\frac{1}{m!} 1 \times 1 \times \cdots \times 1=\frac{1}{m!}$.

This theorem was discovered and proved by the great mathematician Leonhard Euler, at the age of 22 .

This is solved directly from the definition of binomial coefficients; there are many problems that explore this idea.

Exam results: High score $=84$, Median score $=68$, Low score $=52$ (before any extra credit)

